Characterization of renal ecto-phosphodiesterase.

نویسندگان

  • Edwin K Jackson
  • Jin Ren
  • Lefteris C Zacharia
  • Zaichuan Mi
چکیده

In kidneys, stimulation of adenylyl cyclase causes egress of cAMP, conversion of cAMP to AMP by ecto-phosphodiesterase, and metabolism of AMP to adenosine by ecto-5'-nucleotidase. Although much is known about ecto-5'-nucleotidase, the renal ecto-phosphodiesterase remains uncharacterized. We administered cAMP (10 microM in the perfusate) to 12 different groups of perfused kidneys. AMP was measured in perfusate using ion trap mass spectrometry. In control kidneys (n=19), basal renal secretion rate of AMP was 0.49+/-0.08 and increased to 3.0+/-0.2 nmol AMP/g kidney weight/min during administration of cAMP. A broad-spectrum phosphodiesterase (PDE) inhibitor (1,3-isobutyl-1-methylxanthine, 300 microM, n=6) and an ecto-phosphodiesterase inhibitor (1,3-dipropyl-8-p-sulfophenylxanthine, 1 mM, n=6) significantly attenuated cAMP-induced AMP secretion by 60 and 74%, respectively. Blockade of PDE1 (8-methoxymethyl-3-isobutyl-1-methylxanthine, 100 microM), PDE2 [erythro-9-(2-hydroxy-3-nonyl)adenine, 30 microM], PDE3 (milrinone, 10 microM; cGMP, 10 microM), PDE4 (Ro 20-1724 [4-(3-butoxy-4-methoxybenzyl)imidazolidin-2-one], 100 microM), PDE5 and PDE6 (zaprinast, 30 microM), and PDE7 [BRL-50481 (5-nitro-2,N,N-trimethylbenzenesulfonamide), 10 microM] did not alter renal ecto-phosphodiesterase activity. Administration of a concentration (100 microM) of dipyridamole that blocks PDE8 inhibited ecto-phosphodiesterase activity (by 44%). However, a lower concentration of dipyridamole (3 microM) that blocks PDE9, PDE10, and PDE11, but not PDE8, did not inhibit ecto-phosphodiesterase activity. These data support the conclusion that renal ecto-phosphodiesterase activity is not mediated by PDE1, PDE2, PDE3, PDE4, PDE5, PDE6, PDE7, PDE9, PDE10, or PDE11 and is inhibited by high concentrations of dipyridamole. Ecto-phosphodiesterase has some pharmacological characteristics similar to PDE8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cAMP-adenosine pathway in the proximal tubule.

The "extracellular cAMP-adenosine pathway" refers to the conversion of cAMP to AMP by ecto-phosphodiesterase, followed by metabolism of AMP to adenosine by ecto-5'-nucleotidase, with all the steps occurring in the extracellular compartment. This study investigated whether the extracellular cAMP-adenosine pathway exists in proximal tubules. Freshly isolated proximal tubules rapidly converted bas...

متن کامل

Role of the extracellular cAMP-adenosine pathway in renal physiology.

Adenosine exerts physiologically significant receptor-mediated effects on renal function. For example, adenosine participates in the regulation of preglomerular and postglomerular vascular resistances, glomerular filtration rate, renin release, epithelial transport, intrarenal inflammation, and growth of mesangial and vascular smooth muscle cells. It is important, therefore, to understand the m...

متن کامل

Metabolism of cAMP to adenosine in the renal vasculature.

We recently demonstrated that cAMP added to the perfusate increased the renal venous recovery of adenosine in the isolated rat kidney, an effect blocked by inhibition of ecto-phosphodiesterase and ecto-5'-nucleotidase. Although our previous study established the cAMP-adenosine pathway, i.e., the conversion of cAMP to adenosine, as a viable metabolic pathway within the kidney, that study did not...

متن کامل

The extracellular cAMP-adenosine pathway significantly contributes to the in vivo production of adenosine.

The extracellular cAMP-adenosine pathway is the cellular egress of cAMP followed by extracellular conversion of cAMP to adenosine by the sequential actions of ecto-phosphodiesterase and ecto-5'-nucleotidase. Although detailed studies in isolated organs, tissues, and cells provide evidence for an extracellular cAMP-adenosine pathway, whether this mechanism contributes significantly to adenosine ...

متن کامل

Extracellular 2',3'-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells.

In a previous study, we demonstrated that human proximal tubular epithelial cells obtained from a commercial source metabolized extracellular 2',3'-cAMP to 2'-AMP and 3'-AMP and extracellular 2'-AMP and 3'-AMP to adenosine (the extracellular 2',3'-cAMP-adenosine pathway; extracellular 2',3'-cAMP → 2'-AMP + 3'-AMP → adenosine). The purpose of this study was to investigate the metabolism of extra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 321 2  شماره 

صفحات  -

تاریخ انتشار 2007